

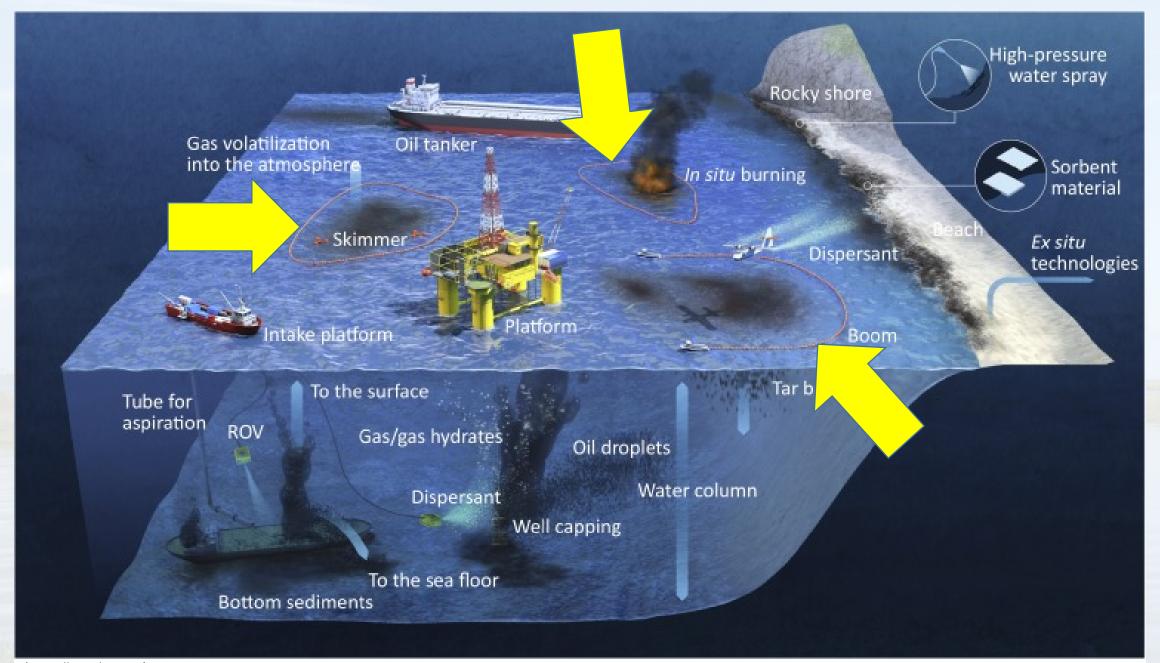
The initial impacts of Corexit EC9500A on microbial activity and community structure in Barataria Bay, LA

Jessica Vaccare

Advsior: Dr. John R. White

Collaborators: Dr. Ashvini Chauhan and Dr. Rajneesh Jaswal

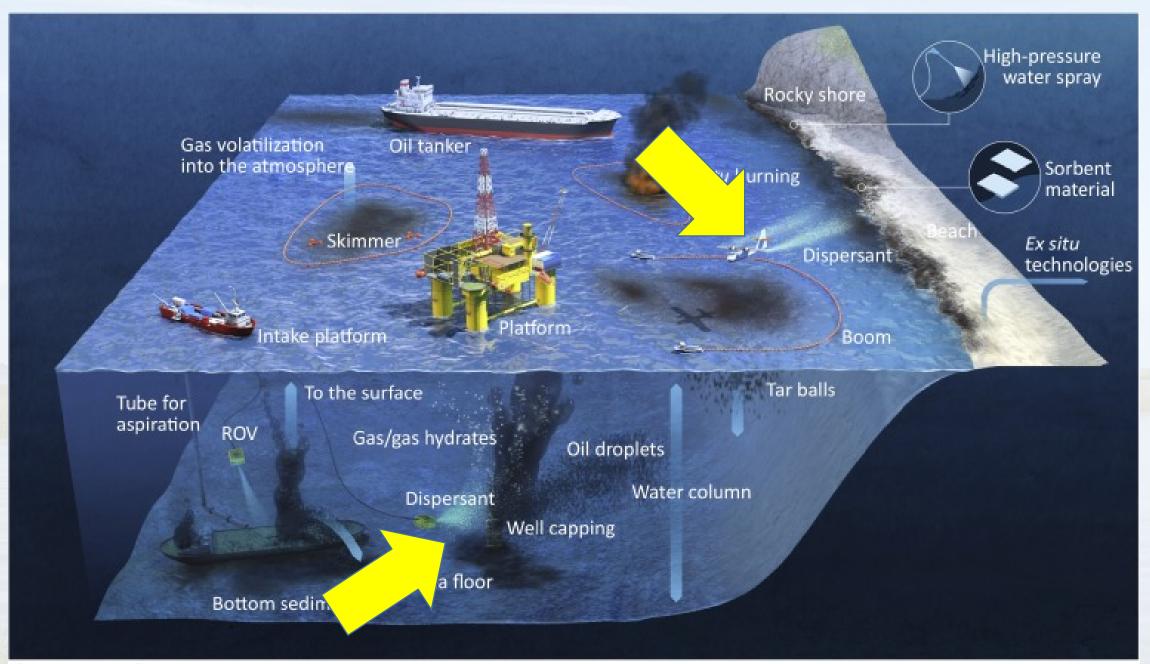
BP- Deepwater Horizon Explosion


- April 20, 2010
- ~ 5 million barrels (795 million liters) of oil released over 87 days
- 42 miles off the coast of LA
- Impacted more than 1,000 miles of coastline
- \$5.5 billion Clean Water Act penalty and up to \$8.8 billion in natural resource damages
- Deep wellhead
- Physical barriers and sorbents

www.CNBC.com

www.CNN.com

Chemical dispersants

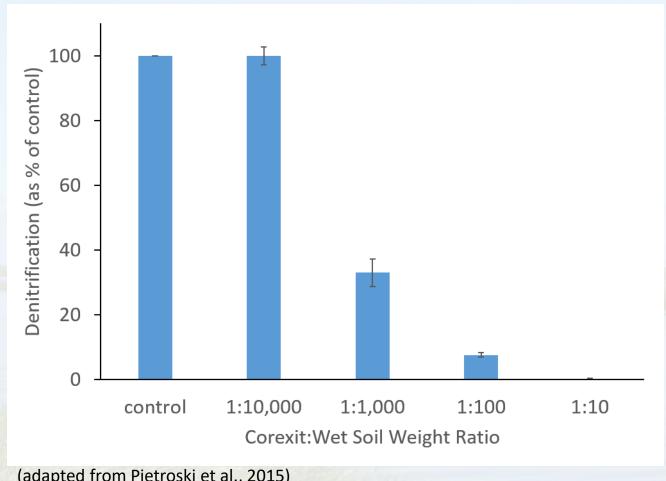

- Combination of hydrocarbon based solvents and surfactants
- Increase surface area of the oil
 - Increase degradation rates
 - Prevent surface oil slicks from reaching land
- Impacts
 - Numerous toxicity studies on plants and animals
 - Limited studies on the effect on microbes
 - Facilitate biogeochemical processes in wetlands
 - Recent access

www.Wikipedia.com

www.telegraph.co.uk

Chemical dispersants

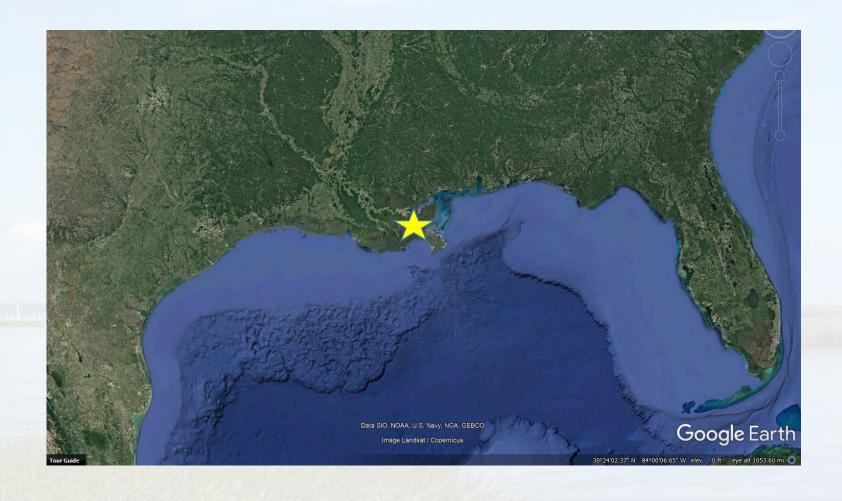
- Combination of hydrocarbon based solvents and surfactants
- Increase surface area of the oil
 - Increase degradation rates
 - Prevent surface oil slicks from reaching land
- Impacts
 - Recent access
 - Numerous toxicity studies for plants and animals
 - Limited studies about the effects on wetland microbes
 - Facilitate biogeochemical processes in wetlands


www.Wikipedia.com

www.telegraph.co.uk

Previous work

- Hamdan and Fulmer, 2011
 - Inhibition of hydrocarbon degrading bacteria
- Pietroski et al., 2015
 - Microbial biomass N
 - N mineralization
 - Severely impacted denitrification
- Previous work shows that Corexit has an impact on microbial processes


(adapted from Pietroski et al., 2015)

Experiment Objectives

- Goal
 - To find how microbial communities in the soil react to different levels of Corexit exposure
- Objectives
 - Measure heterotrophic microbial respiration
 - Metagenomics study Dr. Chauhan and Dr. Jaswal at FAMU
- Obtain a more complete picture of how the addition of dispersant impacts the coastal wetland ecosystem
- Find links between shifts in microbial function and structure to possible shifts in ecosystem services

Sampling site

- Barataria Bay, LA
- Triplicate cores taken from marsh (marsh)
- Triplicate cores taken from about 200 m out (estuarine)

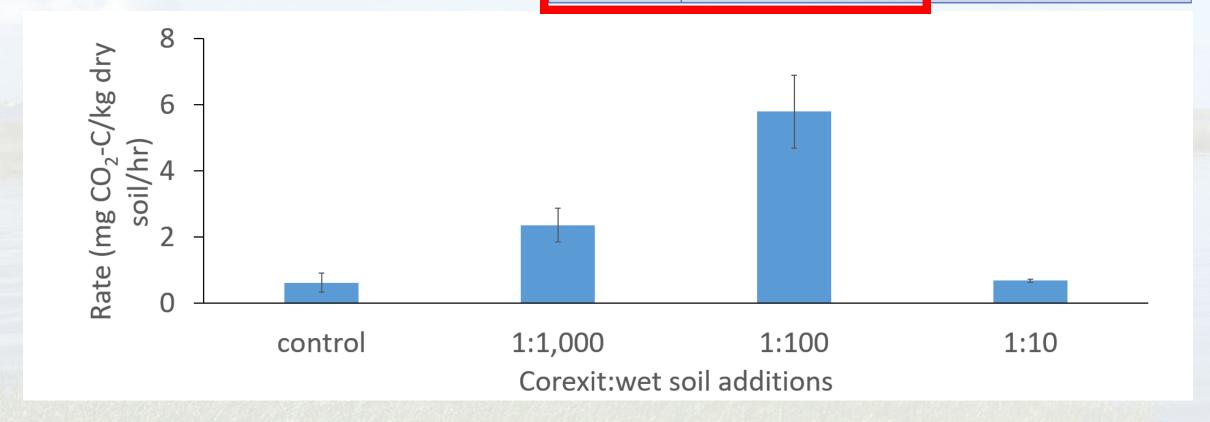
Methods

Microbial biomass C & N,
%LOI, bulk density, moisture content, TP, and TC/TN

- CO₂ production over time
 - Incubated at 25°C under anaerobic headspace
 - Corexit:wet soil ratios of 1:1,000, 1:100, 1:10, and control
 - Samples analyzed using a GC/FID for a week

	Marsh	Estuary
Moisture content	0.71 ± 0.01	0.5003 ± 0.01
%LOI	22.4 ± 1.45	6.98 ± 0.3
Bulk density (g/cm^3)	0.352 ± 0.04	0.732 ± 0.02
TC (g/kg)	113 ± 11.16	24.6 ± 2.32
TN (g/kg)	5.95 ± 0.29	1.72 ± 0.15
TP (mg/kg)	573 ± 8.19	527 ± 10.85
MBC (g/kg)	4.29 ± 0.33	1.55 ± 0.33
MBN (mg/kg)	23.2 ± 9.65	7.53 ± 1.05
Rate (mg CO ₂ -C/kg dry soil/hr)		
(Control cores)	0.63 ± 0.28	0.04 ± 0.03

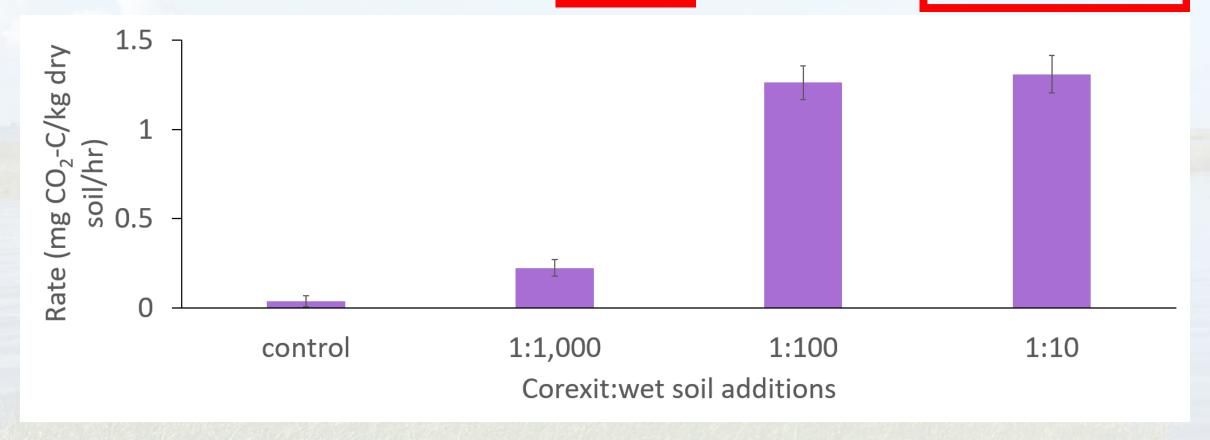
	Marsh	Estuary	
Moisture content	0.71 ± 0.01	0.5003 ± 0.01	
%LOI	22.4 ± 1.45	6.98 ± 0.3	
Bulk density (g/cm^3)	0.352 ± 0.04	0.732 ± 0.02	
TC (g/kg)	113 ± 11.16	24.6 ± 2.32	
TN (g/kg)	5.95 ± 0.29	1.72 ± 0.15	
TP (mg/kg)	573 ± 8.19	527 ± 10.85	
MBC (g/kg)	4.29 ± 0.33	1.55 ± 0.33	
MBN (mg/kg)	23.2 ± 9.65	7.53 ± 1.05	
Rate (mg CO ₂ -C/kg dry soil/hr)			
(Control cores)	0.63 ± 0.28	0.04 ± 0.03	


	Marsh	Estuary
Moisture content	0.71 ± 0.01	0.5003 ± 0.01
%LOI	22.4 ± 1.45	6.98 ± 0.3
Bulk density (g/cm^3)	0.352 ± 0.04	0.732 ± 0.02
TC (g/kg)	113 ± 11.16	24.6 ± 2.32
TN (g/kg)	5.95 ± 0.29	1.72 ± 0.15
TP (mg/kg)	573 ± 8.19	527 ± 10.85
MBC (g/kg)	4.29 ± 0.33	1.55 ± 0.33
MBN (mg/kg)	23.2 ± 9.65	7.53 ± 1.05
Rate (mg CO ₂ -C/kg dry soil/hr)		
(Control cores)	0.63 ± 0.28	0.04 ± 0.03

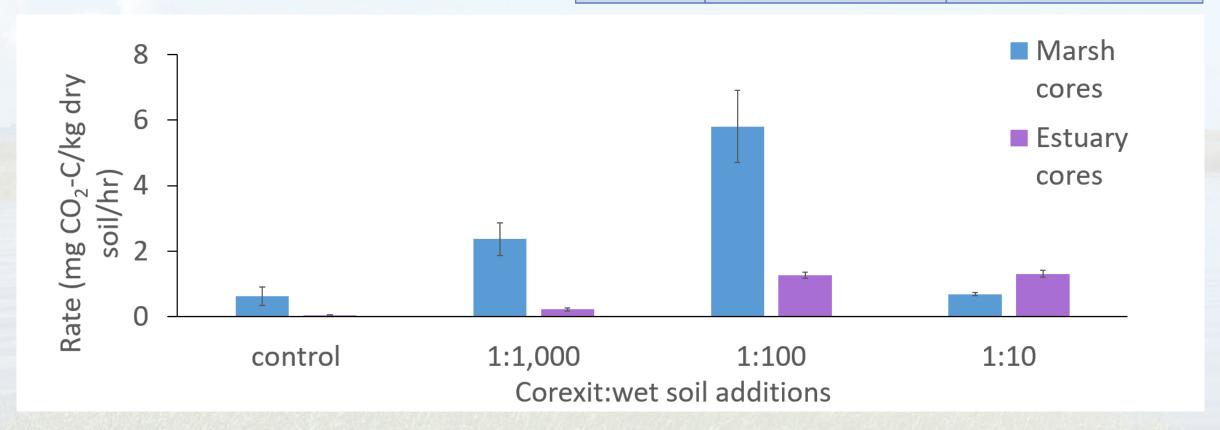
	Marsh	Estuary
Moisture content	0.71 ± 0.01	0.5003 ± 0.01
%LOI	22.4 ± 1.45	6.98 ± 0.3
Bulk density (g/cm^3)	0.352 ± 0.04	0.732 ± 0.02
TC (g/kg)	113 ± 11.16	24.6 ± 2.32
TN (g/kg)	5.95 ± 0.29	1.72 ± 0.15
TP (mg/kg)	573 ± 8.19	527 ± 10.85
MBC (g/kg)	4.29 ± 0.33	1.55 ± 0.33
MBN (mg/kg)	23.2 ± 9.65	7.53 ± 1.05
Rate (mg CO ₂ -C/kg dry soil/hr)		
(Control cores)	0.63 ± 0.28	0.04 ± 0.03

CO₂ production – Marsh Cores

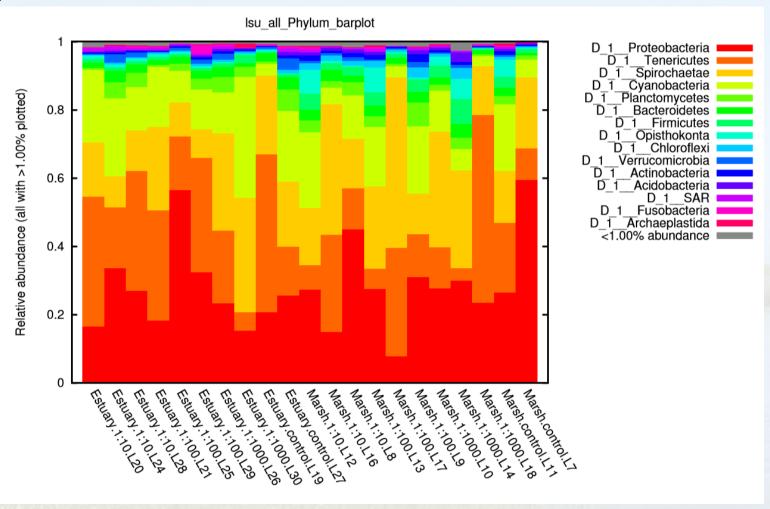
Respiration Rate (mg CO₂-C/kg dry soil/hr)


Addition	Marsh Averages	Estuary Averages
control	0.63 ± 0.28 ^a	0.04 ± 0.03 ^d
1:1,000	2.37 ± 0.5 ^b	0.22 ± 0.05 ^e
1:100	5.8 ± 1.1 ^c	1.26 ± 0.09 ^f
1:10	0.68 ± 0.04 ^a	1.31 ± 0.1 ^f

CO₂ production – Estuary Cores

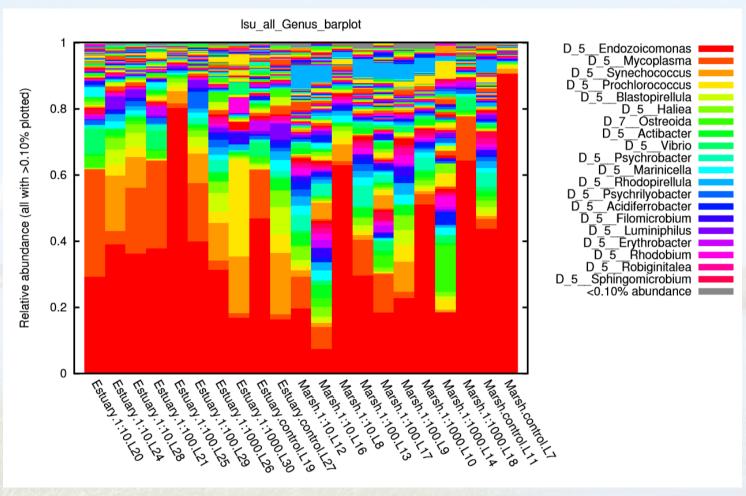

Respiration Rate (mg CO₂-C/kg dry soil/hr)

Addition	Marsh Averages	Estuary Averages
control	0.63 ± 0.28^{a}	0.04 ± 0.03 ^d
1:1,000	2.37 ± 0.5 ^b	0.22 ± 0.05 ^e
1:100	5.8 ± 1.1°	1.26 ± 0.09 ^f
1:10	0.68 ± 0.04ª	1.31 ± 0.1 ^f


CO₂ production – **Both sites**

Respiration Rate (mg CO ₂ -C/kg dry soil/hr)		
Addition	Marsh Averages	Estuary Averages
control	0.63 ± 0.28 ^a	0.04 ± 0.03^{d}
1:1,000	2.37 ± 0.5 ^b	0.22 ± 0.05 ^e
1:100	5.8 ± 1.1 ^c	1.26 ± 0.09 ^f
1:10	0.68 ± 0.04 ^a	1.31 ± 0.1 ^f

Metagenomics data - **Phylum**


- Proteobacteria
- Tenericutes
- Spirochaetae
- Cyanobacteria

(Chauhan and Jaswal, personal communication)

Metagenomics data - **Genus**

- Endozoicomonas
- Mycoplasma
- Synechococcus

(Chauhan and Jaswal, personal communication)

Future Work and Conclusions

- Implications for the use of dispersant and impacts on the coastline
- Detrimental effects with Corexit addition have been shown
- Lack of knowledge about the impacts of dispersant on wetland microbes
- Longer term studies may be useful

www.nationalgeographic.com

www.nytimes.com

Acknowledgements

- Dr. John R. White, Dr. Andy Nyman, and Dr. Kanchan Maiti
- Dr. Ashvini Chauhan and Dr. Rajneesh Jaswal
- CPRA
- My labmates: Katie Bowes, Alina Spera, and Amanda Fontenot
- M.P. Hayes and Ben Haywood

Questions?

